

Algebra: Substitution

Substitute positive numbers, negative numbers, fractions and decimals into expressions and formulae.

Vocabulary

Expression

A collection of letters and numbers.

Formula

Similar to an expression, a formula must have a subject.

Substitute

Replace letters in an expression or formulae with numerical values.

Review : Order of Operation

Evaluate:

a) 5×6

b) $5 \times 6 + 2$

c) $5 + 6 \times 2$

d) $(5 + 6) \times 2$

e) $10 + 4 \div 2$

f) 5^2

g) 2^5

h) $\frac{6+2}{4}$

i) $\sqrt{\frac{5^2 + 3^2 + 4^3}{2}}$

j) $-5 + 7$

k) $-4 - 6$

l) -5×-6

Solutions

Evaluate:

$$\begin{aligned} \text{a) } 5 \times 6 \\ = 30 \end{aligned}$$

$$\begin{aligned} \text{b) } 5 \times 6 + 2 \\ = 32 \end{aligned}$$

$$\begin{aligned} \text{c) } 5 + 6 \times 2 \\ = 17 \end{aligned}$$

$$\begin{aligned} \text{d) } (5 + 6) \times 2 \\ = 22 \end{aligned}$$

$$\begin{aligned} \text{e) } 10 + 4 \div 2 \\ = 12 \end{aligned}$$

$$\begin{aligned} \text{f) } 5^2 \\ = 25 \end{aligned}$$

$$\begin{aligned} \text{g) } 2^5 \\ = 32 \end{aligned}$$

$$\begin{aligned} \text{h) } \frac{6+2}{4} \\ = 2 \end{aligned}$$

$$\begin{aligned} \text{i) } \sqrt{\frac{5^2 + 3^2 + 4^3}{2}} \\ = 7 \end{aligned}$$

$$\begin{aligned} \text{j) } -5 + 7 \\ = 2 \end{aligned}$$

$$\begin{aligned} \text{k) } -4 - 6 \\ = -10 \end{aligned}$$

$$\begin{aligned} \text{l) } -5 \times -6 \\ = 30 \end{aligned}$$

Key Facts

An **expression** is a collection of letters and numbers.

Expressions

$$3x - y^2 + 5$$

$$a + b + c$$

$$\left(\frac{c}{\sqrt{a^2 + b^2}} \right)^{\frac{3}{2}}$$

A **formula** is like an expression but it must have a **subject**.

Formulae

$$A = \pi r^2$$

$$F = \frac{9C}{5} + 32$$

$$s = ut + \frac{1}{2}at^2$$

Quick Check

Which of these are expressions and which are formulae?

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\frac{1}{2}(A + B)$$

$$\% \text{ profit} = \frac{\text{profit}}{\text{original amount}} \times 100$$

$$\frac{4}{3}\pi r^3$$

Solutions

Which of these are expressions and which are formulae?

Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Expression

$$\frac{1}{2}(A + B)$$

Formula

$$\% \text{ profit} = \frac{\text{profit}}{\text{original amount}} \times 100$$

Expression

$$\frac{4}{3}\pi r^3$$

Examples

$$a = 2, b = 3, c = 5$$

Work out the value of each expression:

1 $a + b + c$

2 ab

3
$$\frac{2b + 3a}{2c}$$

4 $\sqrt{c^2 - b^2}$

Challenge

Evaluate

$$\frac{abc}{cba}$$

Solutions

$$a = 2, b = 3, c = 5$$

Work out the value of each expression:

1 $a + b + c = 10$

2 $ab = 6$

3 $\frac{2b + 3a}{2c} = 1.2$

4 $\sqrt{c^2 - b^2} = 4$

Challenge

Evaluate

$$\frac{abc}{cba} = 1$$

Exercise

$$a = 3, b = 2, c = 4$$

Evaluate:

$$1. a + b + c$$

$$2. 2b - c$$

$$3. ab - c$$

$$4. b - 2a$$

$$5. ba$$

$$6. abc$$

$$a = 40, b = 5, c = 8$$

Evaluate:

$$1. a - bc$$

$$2. a^2 + b^2$$

$$3. \frac{a}{b}$$

$$4. \frac{a}{bc}$$

$$5. 2(b + c)$$

$$6. \frac{a}{10}(b - c)$$

$$a = 3, b = 4, c = \frac{1}{2}$$

Evaluate:

$$1. \sqrt{a^2 + b^2}$$

$$2. \frac{b}{c}$$

$$3. \frac{ab}{c}$$

$$4. c^3$$

$$5. \frac{c^2}{b}$$

Solutions

$$a = 3, b = 2, c = 4$$

Evaluate:

$$1. a + b + c = 9$$

$$2. 2b - c = 0$$

$$3. ab - c = 2$$

$$4. b - 2a = -4$$

$$5. ba = 6$$

$$6. abc = 24$$

$$a = 40, b = 5, c = 8$$

Evaluate:

$$1. a - bc = 0$$

$$2. a^2 + b^2 = 1625$$

$$3. \frac{a}{b} = 8$$

$$4. \frac{a}{bc} = 1$$

$$5. 2(b + c) = 26$$

$$6. \frac{a}{10}(b - c) = -12$$

$$a = 3, b = 4, c = \frac{1}{2}$$

Evaluate:

$$1. \sqrt{a^2 + b^2} = 5$$

$$2. \frac{b}{c} = 8$$

$$3. \frac{ab}{c} = 24$$

$$4. c^3 = \frac{1}{8}$$

$$5. \frac{c^2}{b} = \frac{1}{16}$$

$$x = 2, y = 4, z = 10$$

Extra Exercise

Work out:

$$x + y$$

$$2z$$

$$x - y$$

$$xy$$

$$yzx$$

$$\frac{z}{5}$$

$$\frac{8}{2x}$$

$$y^2$$

$$x^5$$

$$z \div x$$

$$xy + yz$$

$$x(y + z)$$

$$z(z + 1)$$

$$\frac{x + z}{y}$$

$$\sqrt{x + y + z}$$

$$\frac{z}{x}$$

$$\frac{x}{z}$$

$$\sqrt[3]{yx}$$

$$xz^2$$

$$(xz)^2$$

$$x = 2, y = 4, z = 10$$

Solutions

Work out:

$$x + y = 6$$

$$2z = 20$$

$$x - y = -2$$

$$xy = 8$$

$$yzx = 80$$

$$\frac{z}{5} = 2$$

$$\frac{8}{2x} = 2$$

$$y^2 = 16$$

$$x^5 = 32$$

$$z \div x = 5$$

$$xy + yz = 48$$

$$x(y + z) = 28$$

$$z(z + 1) = 110$$

$$\frac{x + z}{y} = 3$$

$$\sqrt{x + y + z} = 4$$

$$\frac{z}{x} = 5$$

$$\frac{x}{z} = \frac{1}{5}$$

$$\sqrt[3]{yx} = 2$$

$$xz^2 = 200$$

$$(xz)^2 = 400$$

Substituting Negative Numbers

$$a = 5, b = -2, c = -8$$

Evaluate:

$$1. a + b$$

$$2. b - a$$

$$3. a - b$$

$$4. ab$$

$$5. bc$$

$$6. a^3$$

$$a = 5, b = -2, c = -8$$

Evaluate:

$$1. abc$$

$$2. c^2$$

$$3. 12 - ab$$

$$4. a^3 - b^3$$

$$5. \sqrt{bc}$$

$$d = 8, e = \frac{3}{4}, f = -\frac{1}{2}$$

Evaluate:

$$1. ed$$

$$2. e + f$$

$$3. ef$$

$$4. \frac{f}{e}$$

$$5. f^{10}$$

Solutions

$$a = 5, b = -2, c = -8$$

Evaluate:

$$1. a + b = 3$$

$$2. b - a = -7$$

$$3. a - b = 7$$

$$4. ab = -10$$

$$5. bc = 16$$

$$6. a^3 = 125$$

$$a = 5, b = -2, c = -8$$

Evaluate:

$$1. abc = 80$$

$$2. c^2 = 64$$

$$3. 12 - ab = 22$$

$$4. a^3 - b^3 = 133$$

$$5. \sqrt{bc} = 4$$

$$d = 8, e = \frac{3}{4}, f = -\frac{1}{2}$$

Evaluate:

$$1. ed = 6$$

$$2. e + f = \frac{1}{4}$$

$$3. ef = -\frac{3}{8}$$

$$4. \frac{f}{e} = -\frac{2}{3}$$

$$5. f^{10} = \frac{1}{1024}$$

Formulae : Examples

A is the **subject** of the **formula** below.

$$A = \frac{(a+b)h}{2}$$

Evaluate A when a = 8 , b = 12 and h = 5

Solution

A is the **subject** of the **formula** below.

$$A = \frac{(a+b)h}{2}$$

Evaluate A when $a = 8$, $b = 12$ and $h = 5$

$$\begin{aligned} A &= \frac{(8 + 12) \times 5}{2} \\ &= \frac{20 \times 5}{2} \\ &= \frac{100}{2} \quad \underline{\underline{= 50}} \end{aligned}$$

Substitute the given values into each formula.

$$A = \frac{(a + b)h}{2}$$

$$a = 12, \quad b = 1, \quad h = 4$$

$$t = r^4 - 4r$$

$$r = 2$$

$$m = d(e - f)$$

$$d = 4, \quad e = 4, \quad f = -1$$

$$P = \frac{Q}{R + S}$$

$$Q = 8, \quad R = 0.1, \quad S = 0.3$$

$$s = \frac{1}{2}(u + v)t$$

$$u = 5, \quad v = 11, \quad t = 8$$

$$T = 6.28 \sqrt{\frac{L}{g}}$$

$$L = 1, \quad g = 9.81$$

$$R = \frac{1}{R_1} + \frac{1}{R_2}$$

$$R_1 = 1, \quad R_2 = 0.1$$

$$z = \frac{x^2 - y^2}{x - y}$$

$$x = 5, \quad y = 3$$

Substitute the given values into each formula.

Solutions

$$A = \frac{(a + b)h}{2} \quad \mathbf{A = 26}$$

$$a = 12, \quad b = 1, \quad h = 4$$

$$t = r^4 - 4r \quad \mathbf{t = 8}$$

$$r = 2$$

$$m = d(e - f) \quad \mathbf{m = 20}$$

$$d = 4, \quad e = 4, \quad f = -1$$

$$P = \frac{Q}{R + S} \quad \mathbf{P = 20}$$

$$s = \frac{1}{2}(u + v)t \quad \mathbf{s = 64}$$

$$T = 6.28 \sqrt{\frac{L}{g}} \quad \mathbf{T = 2.005}$$

$$Q = 8, \quad R = 0.1, \quad S = 0.3$$

$$u = 5, \quad v = 11, \quad t = 8$$

$$L = 1, \quad g = 9.81$$

$$R = \frac{1}{R_1} + \frac{1}{R_2} \quad \mathbf{R = 11}$$

$$R_1 = 1, \quad R_2 = 0.1$$

$$z = \frac{x^2 - y^2}{x - y} \quad \mathbf{z = 8}$$

$$x = 5, \quad y = 3$$

Extension

$$y = 3x + 2$$

Work out the value of x when y = 29

Exam Style Question

Here are four expressions.

$$\frac{x}{y}$$

$$\frac{y}{x}$$

$$xy$$

$$\frac{x^2}{y^2}$$

When $x = 10$ and $y = 0.1$ which expression has the largest value?

You **must** show your working.

Solution

Here are four expressions.

$$\frac{x}{y}$$

$$\frac{y}{x}$$

$$xy$$

$$\frac{x^2}{y^2}$$

When $x = 10$ and $y = 0.1$ which expression has the largest value?

You **must** show your working.

$$\frac{x}{y} = 100$$

$$\frac{y}{x} = 0.01$$

$$xy = 1$$

$$\frac{x^2}{y^2} = 10\ 000$$

$\frac{x^2}{y^2}$ *has the largest value.*

Exam Style Question

Michelle is trying to work out the two values of t for which $24 - t^3 = 16$

Her values are 2 and - 2

Are her values correct?

You **must** show your working.

Solution

Michelle is trying to work out the two values of t for which $24 - t^3 = 16$

Her values are 2 and - 2

Are her values correct?

You **must** show your working.

When $t = 2$:

$$\begin{aligned}24 - 2^3 \\= 24 - 8 \\= \underline{16}\end{aligned}$$

When $t = - 2$:

$$\begin{aligned}24 - (-2)^3 \\= 24 - -8 \\= \underline{32}\end{aligned}$$

Michelle is incorrect.