

Powers and Roots

Evaluate Powers and Roots of Numbers

Starter Questions

If $a = 5$, $b = 2$, $c = 4$ and $d = 1$, evaluate the following:

- a) a^b b) b^a c) b^c d) a^c e) $b^2 \times b^3$ f) $b^2 + c^2$
g) $2b^2$ h) $(2b)^2$ i) \sqrt{c} k) $\sqrt[3]{a^b + b}$ l) $\sqrt[4]{c^b}$ m) $\frac{d^c}{\sqrt{c^b}}$

Harder Questions

If $p = -1$, $q = 2$ and $r = 4$, evaluate the following:

- a) p^2 b) p^3 c) p^{100} d) $\frac{pqr}{q^r + pr}$ e) $(p^q)^r$ f) $\sqrt[3]{p^2 qr}$

Extension Question

- a) Evaluate the formula: $R = \sqrt[3]{\frac{xy}{x^2 + y^2 - 2z}}$

given that $x = 4$, $y = 3$ and $z = -1$

- b) Substitute the values $a = \frac{1}{2}$, $b = \frac{2}{3}$, $d = \frac{1}{4}$ into the formula.

$$T = \frac{a^3 + b^2}{d}$$

Investigate

The three numbers $(3, 4, 5)$ are called a Pythagorean Triple because $3^2 + 4^2 = 5^2$

How many Pythagorean Triples can you find?

Can you solve $x^3 + y^3 = z^3$. Research this equation

Powers and Roots

Answers

Starter Questions

a) a^b b) b^a c) b^c d) a^c e) $b^2 \times b^3$ f) $b^2 + c^2$
= 25 = 32 = 16 = 625 = 32 = 20

g) $2b^2$ h) $(2b)^2$ i) \sqrt{c} k) $\sqrt[3]{a^b + b}$ l) $\sqrt[4]{c^b}$ m) $\frac{d^c}{\sqrt{c^b}}$ = $\frac{1}{4}$
= 8 = 16 = 2 = 3 = 2

Harder Questions

If $p = -1$, $q = 2$ and $r = 4$, evaluate the following:

a) $p^2 = 1$ b) p^3 c) p^{100} d) $\frac{pqr}{q^r + pr}$ e) $\sqrt[3]{p^2qr}$
= 1 = -1 = 1 = $\frac{1}{3}$ = 1 = 2

Extension Questions

a) $R = \sqrt[3]{\frac{xy}{x^2 + y^2 - 2z}} = \frac{4}{3} = \frac{4}{3}$

b) $a = \frac{1}{2}$, $b = \frac{2}{3}$, $d = \frac{1}{4}$

$$T = \frac{a^3 + b^2}{d} = \frac{41}{18}$$

Investigation

There are an infinite number of solutions to $x^2 + y^2 = z^2$

There are no solutions to $x^3 + y^3 = z^3$.